Year 10	Autumn term 1	Autumn term 2	Spring term 1	Spring term 2	Summer term 1	Summer term 2		
Themes	Students will know that							
Structure								
and bonding	between metals and	Mass is conserved in	arranged in a reactivity	ionic compounds using	transfer energy.			
	non-metals, forming	chemical reactions.	series based on their	electricity; products	Exothermic reactions	depend on		
Chemical	giant ionic lattices	Chemical equations can	reactions with water,	depend on ion	release energy;	temperature,		
Calculations	with high melting	be balanced to show	acids, and	reactivity.	endothermic reactions	concentration,		
	J J	reacting amounts.	1	The extraction of metals	absorb energy.	pressure, surface area		
Chemical	points.	The mole is a fixed	displacement reactions.	depends on their	J	and catalysts.		
Changes	Covalent bonding occurs between non-	number of particles	lonic half equations	!	Reaction profiles show	Collision theory		
		(Avogadro).	show electron transfer	position in the reactivity	energy changes.	explains rates.		
Electrolysis	metals, forming simple molecules or	Relative formula mass	in oxidation and	series (e.g., carbon	Bond energies can be used to calculate	Reversible reactions		
	giant covalent lattices	and moles link mass and	reduction.	reduction, electrolysis). There are real-world	energy changes.	reach equilibrium,		
Chemical	(diamond, graphite,	number of particles.	Acids react with bases	applications of these	Cells and batteries use	where forward and		
Changes	` ' '	Concentrations can be	to form salts, and with	' '	chemical reactions to	backward rates are		
	silicon dioxide). Metallic bonding	expressed in mol/dm ³ .	carbonates to form	processes in industry, sustainability, and	produce electricity;	equal.		
Rates and	involves delocalised	Percentage yield and	carbonates to form	• •	fuel cells use hydrogen	Le Chatelier's principle		
equilibrium	electrons and	atom economy measure	The pH scale measures	resource management.	in a sustainable way.	predicts equilibrium		
	explains properties of	efficiency of reactions.	acidity/alkalinity in		ili a sustailiable way.	shifts.		
	metals. Nanoparticles	Titrations allow	terms of H ⁺ ion			The Haber process and		
	have large SA:V ratios	calculation of	concentration.			industrial processes		
	and unusual	concentrations.	concentration.			rely on equilibrium and		
	properties. States of					optimisation.		
	matter are explained							
	by particle models,							
	and changes of state							
	occur at fixed							
	temperatures.							
	temperatures.		Students wil	I know how to				
	Draw ionic, covalent	Balance equations.	Write balanced symbol	Predict products of	Measure temperature	Investigate rates		
	and metallic bonding	Calculate relative	equations for reactions	electrolysis for molten	change in reactions.	(disappearing cross/gas		
	diagrams.	formula mass, moles,	of acids and metals,	salts and aqueous	Draw reaction profiles.	volume); analyse		
	Explain properties of	masses and	bases, and carbonates.	solutions.	Calculate bond energy	graphs; apply Le		
	substances from	concentrations.	Investigate the	Write ionic half	changes.	Chatelier's principle.		
	bonding; describe	Carry out titrations	reactivity of metals	equations for electrode	30-0	chateller s principle.		
	and evaluate uses of	(separate science).	through practical	reactions.				
	22. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	(separate science).	experiments.					
	experiments.							

polymers, graphene and nanoparticles. Understand the different command words used in 6-mark GCSE questions.	Evaluate atom economy and yield. Answer exam question calculations	Construct and interpret reactivity series from experimental results. Use the pH scale and universal indicator/ pH probes to determine acidity. Perform neutralisation titrations and calculate concentrations. Be confident in answering four-mark	Apply knowledge to industrial contexts (e.g., extraction of aluminium, purification of copper).				
		GCSE questions. Vocabulary and the	concepts they link to				
		vocabalary arra tric	concepts they mik to				
Ionic, covalent, metallic, lattice, intermolecular forces, delocalised → links to physics (forces, energy).	Mole, Avogadro, concentration, yield, atom economy, limiting reactant → strong maths links.	Oxidation, reduction, displacement, reactivity, pH.	Electrolysis, anode, cathode, ion, electron, extraction, ore.	Exothermic, endothermic, activation energy, bond enthalpy, fuel cell → physics (energy).	Rate, collision theory, catalyst, equilibrium, Le Chatelier's principle → maths (graphs, ratios).		
Assessment							
End-of-topic test; exam-style questions.	End-of-topic test; RP: titration.	End-of-topic test; RP reactivity of metals	End-of-topic test; RP electrolysis	End-of-topic test; RP: temperature change.	End-of-topic test; RP: rates of reaction.		
Diversity & development of cultural capital							
Applications in nanotechnology, materials science, and medicine.	Green chemistry and sustainability (reducing waste).	Industry career links	Ethical issues around mining metals	Global energy challenges; development of green technologies.	Economics vs environmental factors		
Cross-curricular opportunities and enrichment							

Maths (ratios, geometry); physics (forces); STEM careers.	Maths (proportionality, rearranging equations);	Physics (electricity in electrolysis) Geogaphy (sustainability of mining)	Physics crossover; sustainability debates.	Maths (gradient); business (industry).
---	---	---	--	---

Year 11 Themes	Autumn term 1	Autumn term 2	Spring term 1	Spring term 2	Summer term 1	Summer term 2		
memes	Students will know that							
Rates and equilibrium Crude oils and fuels Polymers Chemical Analysis The Earth's resources Using resources	Rates of reaction depend on temperature, concentration, pressure, surface area and catalysts. Collision theory explains rates. Reversible reactions reach equilibrium, where forward and backward rates are equal. Le Chatelier's principle predicts equilibrium shifts. The Haber process and industrial processes rely on equilibrium and optimisation.	Crude oil is a finite resource, separated by fractional distillation. Hydrocarbons (alkanes) are saturated; alkenes are unsaturated and reactive. Alcohols, carboxylic acids and esters have important uses. Cracking breaks large hydrocarbons into smaller molecules. Polymers are made by addition and condensation reactions.	Pure substances have sharp melting/boiling points; formulations are useful mixtures. Chromatography separates mixtures and calculates Rf values. Tests identify common gases (O ₂ , CO ₂ , H ₂ , Cl ₂). Flame tests and precipitation reactions identify ions. Instrumental methods (e.g. mass spectrometry, IR) are rapid and accurate.	atmosphere was mostly CO ₂ , volcanic gases and little oxygen. Photosynthesis increased O ₂ and decreased CO ₂ . Greenhouse gases trap heat and contribute to climate change. Human activity (fossil fuels, deforestation) increases greenhouse gases. Pollutants (SO ₂ , NO _x , particulates) cause acid rain and health issues.	Earth's resources can be finite or renewable. Potable water must be treated. Life-cycle assessments compare environmental impact. Recycling reduces use of finite resources. Chemistry contributes to sustainable development.	Core concepts revisited across all topics. Required practicals revised and applied. Exam techniques practised.		
			Students wi	ll know how to				
	Investigate rates (disappearing cross/gas volume); analyse graphs; apply Le Chatelier's principle.	Draw structures of hydrocarbons; describe fractional distillation and cracking; explain polymerisation; test alkenes.	Carry out chromatography; perform flame/ion tests; interpret chromatograms and spectra.	Explain atmospheric changes over time; analyse climate data; evaluate environmental impacts.	Investigate water purification; carry out LCAs; evaluate recycling strategies.	Apply practical and calculation skills; tackle extended questions; use command words effectively.		
	Vocabulary and the concepts they link to							
	Rate, collision theory, catalyst, equilibrium, Le Chatelier's	Hydrocarbon, alkane, alkene, polymer,	Chromatography, formulation, Rf value, flame test, precipitate	Greenhouse gas, climate change, pollutant,		All key vocabulary revisited & reinforced.		

$principle \rightarrow maths$ (graphs, ratios).	monomer, functional group → biology (lipids, proteins).	→ physics (spectroscopy).	carbon footprint → geography & biology.	Finite, renewable, potable, recycling, LCA → geography			
		Asse	ssment				
End-of-topic test; RP: rates of reaction.	End-of-topic test.	End-of-topic test; RP: chromatography, gas tests.	End-of-topic test.	End-of-topic test; RP: water purification.	Mock exams; practice papers; RP focus.		
	Diversity & development of cultural capital						
Economics vs environmental factors	Environmental issues of plastics and fossil fuels.	Forensics, medicines, food safety.	Climate change awareness; global responsibility for environment.	Global inequalities in access to clean water and resources.			
Cross-curricular opportunities and enrichment							
Maths (gradient); business (industry).	Geography (pollution and sustainability)	Careers in forensics, pharma, food chemistry.	Geography (climate)	Geography (resources); sustainability projects.	Cross-topic revision workshops; intervention; peer mentoring.		